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Abstract
This letter reports on the exact particle mass spectrum in a coagulating system
with the coagulation kernel proportional to the product of masses of two
coalescing particles. This model is known to reveal the sol–gel transition, i.e.,
formation of a cluster with the mass comparable to the total mass of the whole
system. The single-particle mass spectrum is analyzed in the thermodynamic
limit and it is demonstrated explicitly how the gel appears in the system.

PACS numbers: 02.50.−r, 05.90.+m, 64.60.Qb

Various phenomena of quite different nature can be described as the aggregation processes of
the type (see Drake (1972) and the recent review paper, Leyvraz (2003)),

(m1) + (m2) −→ (m1 + m2), (1)

where the notation (x) stands for an x-mer, a cluster comprising a given number x of elementary
units (monomers). The kinetics of such aggregation processes is formulated in terms of n̄g(t),
the average numbers of g-mers in the system at time t. It is more common, however, to use
the concentrations cg(t) = n̄g(t)/V , where V is the volume of the system proportional to
M, the total number of monomeric units. Of course, M conserves during the whole process.
This thermodynamic description silently assumes that the average occupation numbers are
proportional to M, and if not, the respective concentrations are simply equal to zero as
M −→ ∞. Normally this step does not lead to dramatic consequences and the respective
kinetic equations have found wide applications in many branches of science. However, there
exist exceptions, where the description in the thermodynamic limit leads to an unexpected
mass loss, the latter being attributed to the formation of a gel (a good reference list can
be found in Leyvraz (2003)). Another approach (Lushnikov (1978)) does not introduce the
gel ‘by hands’ and considers a finite system of coagulating particles in which case the mass
conserves ‘by definition’. The gel still appears as a giant particle whose mass is proportional
to the total mass of the system.

Below I consider the coagulation in a finite system and assume that the coagulation kernel
is proportional to the product of masses of colliding particles. Although this problem was
‘almost’ solved in 1978, the particle mass spectrum had not been found. Here I report on
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the exponential asymptotics of the particle mass spectrum. The form of this spectrum in the
vicinity of the gel point has been recently reported in Lushnikov (2004).

Initially let there be M monomers in a volume V . The monomers move, coalesce, produce
dimers, trimers etc along the scheme given by equation (1). Then let Q = {n1, n2, . . . , ng . . .}
be the state of the system which is given by the set of integers ng , the numbers of particles
of mass g. A single coagulation act (collision of two particles + their coalescence) changes a
preceding state Q− = {n1, . . . , nl + 1, . . . , nm + 1, . . . , ng −1 . . .} to the state Q by coalescing
the particles of masses l and m to one particle of mass g. In its turn, a next coagulation act
transfers the state Q to the state Q+ according to the scheme Q− −→ Q −→ Q+, (Q+)− = Q.

Let us introduce a set of variables X = {x1, x2, . . . , xm . . .} and call XQ =
x

n1(Q)
1 x

n2(Q)
2 · · · xnm(Q)

m . Then

xl+m

∂2

∂xl∂xm

XQ = nl(Q)(nm(Q) − δl,m)XQ+
(2)

and

xlxm

∂2

∂xl∂xm

XQ = nl(Q)(nm(Q) − δl,m)XQ. (3)

Here δl,m is the Kroneker delta. Let W(Q, t) be the probability of finding the coagulating
system in the state Q. The generating functional for W(Q, t) is introduced as

�(X, t) =
∑
Q

W(Q, t)XQ. (4)

Equations (2) and (3) allow us to conclude that �(X, t) satisfies the following evolution
equation:

V
∂�

∂t
= 1

2

∑
l,m

K(l,m)(xl+m − xlxm)
∂2�

∂xl∂xm

. (5)

This equation is entirely equivalent to the Markov equation for W(Q, t). Indeed, K(l,m)/V

is the probability per unit time for two particles to meet in the volume V and to coalesce,
whereas the differential operations equations (2) and (3) produce the correct combinatorial
factors.

For K(g, l) = 2gl and initially monodisperse particles
(
�(X, 0) = xM

1

)
the solution to

equation (5) had been found in the form (Lushnikov (1978)),

�M = M!

2πi

∮
dz

zM+1
exp


 ∞∑

g=1

zgag(t)xg


 . (6)

The integration contour in equation (6) surrounds the origin of coordinates in the complex
plane z. The functions ag(t) are polynomials of exp(τ ) (τ = t/V ) (see Lushnikov (2004)),

n̄g(τ ) =
(

M

g

)
e(g2−2Mg+g)τ (e2τ − 1)g−1Fg−1(e

2τ ). (7)

Here n̄g are the average numbers of g-mers in the system. The polynomials Fg(x) are
introduced by their exponential generating function (Knuth (1998), Flajolet et al (1998) and
references therein),

F(ξ, x) =
∞∑

n=0

Fn(x)
ξn

n!
. (8)

As shown in Knuth (1998), the function F satisfies the equation,

F(z(x − 1), x)W(z, x) = W ′
z(z, x), (9)
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where

W(z, x) =
∞∑

n=0

zn

n!
xn(n−1)/2. (10)

Combining equations (8)–(10) yields a set of linear recurrence relations for Fg ,

xg(g+1)/2 =
g∑

m=0

( g

m

)
Fg−m(x)(x − 1)g−mxm(m−1)/2. (11)

This recurrence is readily converted to a simpler one,
g∑

m=0

( g

m

)
Fm(x)(x − 1)mx(m+1)(m−2g)/2 = 1. (12)

A more elegant recurrence can be found for Ag(x) = (x − 1)gFg(x),

Ag(x) = xg(g+1)/2 −
g−1∑
m=0

( g

m

)
Am(x)x(g−m)(g−m−1)/2, (13)

with A0(x) = 1. From this equation we see that Ag(x) is a polynomial of degree g(g + 1)/2,
while Fg(x) has degree g(g − 1)/2.

The recurrence equation (12) proves that the spectrum equation (7) conserves the total
mass, i.e., ∑

g

gn̄g(τ ) = M. (14)

Indeed, let us apply equation (12) to g = M − 1 and use the notation x = e2τ . The following
chain of equalities,

1 =
M−1∑
g=0

(
M − 1

g

)
(x − 1)gFg(x)x(g+1)(g−2M+2)/2

=
M∑

g=1

(
M − 1

g − 1

)
(x − 1)g−1Fg−1(x)xg(g−2M+1)/2

= M−1
M∑

g=1

g

(
M

g

)
(x − 1)g−1Fg−1(x)xg(g−2M+1)/2,

proves equation (14).
At large (but finite)M and finite t (t/M � 1) it is more convenient to replace the

polynomials Fg(x) by Pg(δ) = Fg(1 + δ). The exponential generating function for Pg(δ)

satisfies the following nonlinear integral equation Lushnikov (2004):

ln Y (ξ, δ) = ξ

∫ 1

0
Y (ξ(1 + uδ), δ) du. (15)

Here

Y (ξ, δ) =
∞∑

g=0

ξg

g!
Pg(δ) (16)

The function Y (ξ, δ) can be expanded in powers of δ,

Y (ξ, δ) =
∞∑

k=0

Bk(ξ)δk. (17)
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Even more simple equation

ln Y = ξY + δ
ξ 2

2
Y ′

ξ (18)

can serve for the asymptotic analysis of the polynomials Pg(δ) as δ −→ 0, while the product
gδ is finite. Still the asymptotic analysis remains extremely complex.

Below I wish to demonstrate a trick allowing one to pass by all these complexities. My idea
is to apply the recurrence equation (12) which defines the polynomials Fg . More convenient is,
however, to apply the mass conservation, which, as has been just shown, is entirely equivalent to
equation (12).

My recent analysis Lushnikov (2003) prompts the functional form of Pg(δ) at large g and
small δ. It is

Pg(δ) ∝ ggf g(gδ). (19)

This form is almost evident. The factor gg reproduces Pg(0). The product gδ inevitably
should appear in the thermodynamic limit, as well as the exponent g. No other ways for g and
δ to enter the asymptotic expression for Pg(δ) are seen, except for a pre-exponential factor.

Let us introduce µ = g/M and exponentiate the exact mass spectrum equation (7),

n̄g(t) = eM�(µ,t), (20)

with �(µ, t) � 0. In the limit of finite µ and M −→ ∞ we can write,

�(µ, t) = −(1 − µ) ln(1 − µ) + (µ2 − 2µ)t + µ ln 2t + µψ(µt), (21)

where ψ(x) = ln f (2x). We have not yet specified the function ψ and are doing this now
using the condition of the total mass conservation, equation (14). To this end we note that the
sum in equation (14) contains the terms exponentially dependent on M. This means that the
terms with µ = µc(t) defined from the condition �(µc, t) = 0 give the main contribution
to the sum in equation (14), because �(µ, t) cannot be positive (otherwise n̄g(t) will be
exponentially large). Hence, the function �(µ, t) should have a maximum at µ = µc(t), or
�′

µ(µc, t) = 0. These two conditions give two equations,

−(1 − µc) ln(1 − µc) + (µ2 − 2µc)t + µc ln 2t + µcψ(µct) = 0, (22)

ln(1 − µc) + 1 + (2µc − 2)t + ln 2t + ψ(µct) + µctψ
′(µct) = 0. (23)

Let us introduce the variable x = µc(t)t and two unknown functions, ψ(x) and t (x). Then
these two equations can serve for determining these functions.

It is easy to check that

ψ(x) = ln
1 − e−2x

2x
+ x (24)

and

t (x) = x

1 − e−2x
(25)

are the solution to the set of equations (22), (23). It is seen that t (0) = 1/2. At t < 1/2 only
one extremal point µ = 0 contributes to the total mass. At t > 1/2 both extremal points,
µ = 0 and µ = µc(t) defined by the equation t = t (µct) do. The total mass is then shared
between the sol (the contribution of the point µ = 0) and gel (µ = µc(t)). There are strong
reasons to believe that only one giant particle forms at µ = µc (see Lushnikov (1978), 2004)).
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The mass of this particle is thus gc(t) = Mµc(t), where, as follows from equation (25), µc(t)

is the root of the equation,

t = 1

2µc

ln
1

1 − µc

. (26)

Let us return to the function f (x) from equation (19). Equation (24) gives,

f (x) = sinh(x/2)

x/2
, (27)

and the exponential asymptotic formula for the polynomial Pg(δ) is thus,

Pg(δ) ∝ sinhg(gδ/2)

(δ/2)g
. (28)

At small gδ this expression gives

pg(δ) ∝ g9 exp(g3δ2/24) (29)

This result had been reported in Lushnikov (2004).
The function �, an analogue of the free energy in statistical mechanics, has the form,

�(µ, t) = −(1 − µ) ln(1 − µ) − µ ln µ + 2(µ2 − µ)t + µ ln(1 − e−2µt ). (30)

Now it is possible to write down the asymptotic expression for the particle mass spectrum.
It is

n̄(g, t) = M√
2π


 1√

g5
+

√
|�′′

µ(µc, t)|
M3

θ(t − tc)


 exp{M[−(1 − µ) ln(1 − µ) − µ ln µ

+ 2(µ2 − µ)t + µ ln(1 − e−2µt )]} (31)

where θ(x) is the Heaviside step-function and tc = 1/2 is the critical time. The pre-exponential
factor is restored on absolutely the same ground as in Lushnikov (2004). The first term correctly
reproduces the mass of the sol (g � M). This term becomes very small at g ∝ M , and the
second term normalizing the gel peak to unity alone contributes to the sum in equation (14) at
large g.

The main results of this short note can be summarized as follows.

(i) Equation (31) gives the mass spectrum in the coagulating system with the coagulation
kernel proportional to the product of masses of two coalescing particles. This final
expression is surprisingly simple.

(ii) A trick is proposed allowing for the asymptotic form of the polynomials Pg(δ)

(equation (28) to be established without a heavy analysis of equations (15) and (18).
Of course, I tried to analyse these equations and not without success (see Lushnikov
(2004)), but I was not (yet) able to derive equation (28) in this way.
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